86 research outputs found

    Tech United Eindhoven RoboCup adult size humanoid team description 2012

    Get PDF
    This document presents the 2012 Tech United Eindhoven adult size humanoid robot team from The Netherlands. The team contributes the adult-size humanoid robot TUlip. Here we present the mechanical design and kinematic structure of the robot. We introduce the walking gait and contribute a controller structure including gravity compensation. Finally, we describe the vision system, self localization and world model, which are used for the attacker and defender strategy in the humanoid robot soccer game

    Architecture and dynamics of the jasmonic acid gene regulatory network

    Get PDF
    Jasmonic acid (JA) is a critical hormonal regulator of plant growth and defense. To advance our understanding of the architecture and dynamic regulation of the JA gene regulatory network, we performed a high-resolution RNA-seq time series of methyl JA-treated Arabidopsis thaliana at 15 time points over a 16-h period. Computational analysis showed that methyl JA (MeJA) induces a burst of transcriptional activity, generating diverse expression patterns over time that partition into distinct sectors of the JA response targeting specific biological processes. The presence of transcription factor (TF) DNA binding motifs correlated with specific TF activity during temporal MeJA-induced transcriptional reprogramming. Insight into the underlying dynamic transcriptional regulation mechanisms was captured in a chronological model of the JA gene regulatory network. Several TFs, including MYB59 and bHLH27, were uncovered as early network components with a role in pathogen and insect resistance. Analysis of subnetworks surrounding the TFs ORA47, RAP2.6L, MYB59, and ANAC055, using transcriptome profiling of overexpressors and mutants, provided insights into their regulatory role in defined modules of the JA network. Collectively, our work illuminates the complexity of the JA gene regulatory network, pinpoints and validates previously unknown regulators, and provides a valuable resource for functional studies on JA signaling components in plant defense and development

    Dutch Robotics 2011 adult-size team description

    Get PDF
    This document presents the 2011 edition of the team Dutch Robotics from The Netherlands. Our team gathers three Dutch technical universities, namely Delft University of Technology, Eindhoven University of Technology and University of Twente, and the commercial company Philips. We contribute an adult-size humanoid robot TUlip, which is designed based on theory of the limit cycle walking developed in our earlier research. The key of our theory is that stable periodic walking gaits can be achieved even without high-bandwidth robot position control. Our control approach is based on simultaneous position and force control. For accurate force control, we make use of the Series Elastic Actuation. The control software of TUlip is based on the Darmstadt’s RoboFrame, and it runs on a PC104 computer with Linux Xenomai. The vision system consists of two wide-angle cameras, each interfaced with a dedicated Blackfin processor running vision algorithms, and a wireless networking interface

    Dutch Robotics 2010 adult-size team description

    Get PDF
    This document presents the 2010 edition of the team Dutch Robotics from The Netherlands. Our team gathers three Dutch technical universities, namely Delft University of Technology, Eindhoven University of Technology and University of Twente, and the commercial company Philips. We contribute an adult-size humanoid robot TUlip, which is designed based on theory of the limit cycle walking developed in our earlier research. The key of our theory is that stable periodic walking gaits can be achieved even without high-bandwidth robot position control. Our control approach is based on simultaneous position and force control. For accurate force control, we make use of the Series Elastic Actuation. The control software of TUlip is based on the Darmstadt’s RoboFrame, and it runs on a PC104 computer with Linux Xenomai. The vision system consists of two wide-angle cameras, each interfaced with a dedicated Blackfin processor running vision algorithms, and a wireless networking interface

    Specific Visualization of Glioma Cells in Living Low-Grade Tumor Tissue

    Get PDF
    BACKGROUND: The current therapy of malignant gliomas is based on surgical resection, radio-chemotherapy and chemotherapy. Recent retrospective case-series have highlighted the significance of the extent of resection as a prognostic factor predicting the course of the disease. Complete resection in low-grade gliomas that show no MRI-enhanced images are especially difficult. The aim in this study was to develop a robust, specific, new fluorescent probe for glioma cells that is easy to apply to live tumor biopsies and could identify tumor cells from normal brain cells at all levels of magnification. METHODOLOGY/PRINCIPAL FINDINGS: In this investigation we employed brightly fluorescent, photostable quantum dots (QDs) to specifically target epidermal growth factor receptor (EGFR) that is upregulated in many gliomas. Living glioma and normal cells or tissue biopsies were incubated with QDs coupled to EGF and/or monoclonal antibodies against EGFR for 30 minutes, washed and imaged. The data include results from cell-culture, animal model and ex vivo human tumor biopsies of both low-grade and high-grade gliomas and show high probe specificity. Tumor cells could be visualized from the macroscopic to single cell level with contrast ratios as high as 1000: 1 compared to normal brain tissue. CONCLUSIONS/SIGNIFICANCE: The ability of the targeted probes to clearly distinguish tumor cells in low-grade tumor biopsies, where no enhanced MRI image was obtained, demonstrates the great potential of the method. We propose that future application of specifically targeted fluorescent particles during surgery could allow intraoperative guidance for the removal of residual tumor cells from the resection cavity and thus increase patient survival

    Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density‑dependent manner

    Get PDF
    Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed= transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory

    How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory

    Get PDF
    • …
    corecore